1,443 research outputs found

    Data Combinations Accounting for LISA Spacecraft Motion

    Full text link
    LISA is an array of three spacecraft in an approximately equilateral triangle configuration which will be used as a low-frequency gravitational wave detector. We present here new generalizations of the Michelson- and Sagnac-type time-delay interferometry data combinations. These combinations cancel laser phase noise in the presence of different up and down propagation delays in each arm of the array, and slowly varying systematic motion of the spacecraft. The gravitational wave sensitivities of these generalized combinations are the same as previously computed for the stationary cases, although the combinations are now more complicated. We introduce a diagrammatic representation to illustrate that these combinations are actually synthesized equal-arm interferometers.Comment: 10 pages, 3 figure

    Nano-Hertz Gravitational Waves Searches with Interferometric Pulsar Timing Experiments

    Full text link
    We estimate the sensitivity to nano-Hertz gravitational waves of pulsar timing experiments in which two highly-stable millisecond pulsars are tracked simultaneously with two neighboring radio telescopes that are referenced to the same time-keeping subsystem (i.e. "the clock"). By taking the difference of the two time-of-arrival residual data streams we can exactly cancel the clock noise in the combined data set, thereby enhancing the sensitivity to gravitational waves. We estimate that, in the band (10910810^{-9} - 10^{-8}) Hz, this "interferometric" pulsar timing technique can potentially improve the sensitivity to gravitational radiation by almost two orders of magnitude over that of single-telescopes. Interferometric pulsar timing experiments could be performed with neighboring pairs of antennas of the forthcoming large arraying projects.Comment: Paper submitted to Phys. Rev. Letters. It is 9 pages long, and includes 2 figure

    Implementation of Time-Delay Interferometry for LISA

    Full text link
    We discuss the baseline optical configuration for the Laser Interferometer Space Antenna (LISA) mission, in which the lasers are not free-running, but rather one of them is used as the main frequency reference generator (the {\it master}) and the remaining five as {\it slaves}, these being phase-locked to the master (the {\it master-slave configuration}). Under the condition that the frequency fluctuations due to the optical transponders can be made negligible with respect to the secondary LISA noise sources (mainly proof-mass and shot noises), we show that the entire space of interferometric combinations LISA can generate when operated with six independent lasers (the {\it one-way method}) can also be constructed with the {\it master-slave} system design. The corresponding hardware trade-off analysis for these two optical designs is presented, which indicates that the two sets of systems needed for implementing the {\it one-way method}, and the {\it master-slave configuration}, are essentially identical. Either operational mode could therefore be implemented without major implications on the hardware configuration. We then.......Comment: 39 pages, 6 figures, 2 table

    Sensitivity and parameter-estimation precision for alternate LISA configurations

    Get PDF
    We describe a simple framework to assess the LISA scientific performance (more specifically, its sensitivity and expected parameter-estimation precision for prescribed gravitational-wave signals) under the assumption of failure of one or two inter-spacecraft laser measurements (links) and of one to four intra-spacecraft laser measurements. We apply the framework to the simple case of measuring the LISA sensitivity to monochromatic circular binaries, and the LISA parameter-estimation precision for the gravitational-wave polarization angle of these systems. Compared to the six-link baseline configuration, the five-link case is characterized by a small loss in signal-to-noise ratio (SNR) in the high-frequency section of the LISA band; the four-link case shows a reduction by a factor of sqrt(2) at low frequencies, and by up to ~2 at high frequencies. The uncertainty in the estimate of polarization, as computed in the Fisher-matrix formalism, also worsens when moving from six to five, and then to four links: this can be explained by the reduced SNR available in those configurations (except for observations shorter than three months, where five and six links do better than four even with the same SNR). In addition, we prove (for generic signals) that the SNR and Fisher matrix are invariant with respect to the choice of a basis of TDI observables; rather, they depend only on which inter-spacecraft and intra-spacecraft measurements are available.Comment: 17 pages, 4 EPS figures, IOP style, corrected CQG versio

    SyZyGy: A Straight Interferometric Spacecraft System for Gravity Wave Observations

    Full text link
    We apply TDI, unfolding the general triangular configuration, to the special case of a linear array of three spacecraft. We show that such an array ("SyZyGy") has, compared with an equilateral triangle GW detector of the same scale, degraded (but non-zero) sensitivity at low-frequencies (f<<c/(arrany size)) but similar peak and high-frequency sensitivities to GWs. Sensitivity curves are presented for SyZyGys having various arm-lengths. A number of technical simplifications result from the linear configuration. These include only one faceted (e.g., cubical) proof mass per spacecraft, intra-spacecraft laser metrology needed only at the central spacecraft, placement in a single appropriate orbit can reduce Doppler drifts so that no laser beam modulation is required for ultra-stable oscillator noise calibration, and little or no time-dependent articulation of the telescopes to maintain pointing. Because SyZyGy's sensitivity falls off more sharply at low frequency than that of an equilateral triangular array, it may be more useful for GW observations in the band between those of ground-based interferometers (10-2000 Hz) and LISA (.1 mHz-.1 Hz). A SyZyGy with ~1 light- second scale could, for the same instrumental assumptions as LISA, make obseervations in this intermediate frequency GW band with 5 sigma sensitivity to sinusoidal waves of ~2.5 x 10^-23 in a year's integration.Comment: 13 pages, 6 figures; typos corrected, figure modified, references adde

    <i>‘What retention’ means to me</i>: the position of the adult learner in student retention

    Get PDF
    Studies of student retention and progression overwhelmingly appear adopt definitions that place the institution, rather than the student, at the centre. Retention is most often conceived in terms of linear and continuous progress between institutionally identified start and end points. This paper reports on research that considered data from 38 in-depth interviews conducted with individuals who had characteristics often associated with non-traditional engagement in higher education who between 2006 and 2010 had studied an ‘Introduction to HE’ module at one distance higher education institution, some of whom had progressed to further study at that institution, some of whom had not. The research deployed a life histories approach to seek a finer grained understanding of how individuals conceptualise their own learning journey and experience, in order to reflect on institutional conceptions of student retention. The findings highlight potential anomalies hidden within institutional retention rates – large proportions of the interview participants who were not ‘retained’ by the institution reported successful progression to and in other learning institutions and environments, both formal and informal. Nearly all described positive perspectives on lifelong learning which were either engendered or improved by the learning undertaken. This attests to the complexity of individuals’ lives and provides clear evidence that institution-centric definitions of retention and progression are insufficient to create truly meaningful understanding of successful individual learning journeys and experiences. It is argued that only through careful consideration of the lived experience of students and a re-conception of measures of retention, will we be able to offer real insight into improving student retention

    Academic Libraries and Learning Support in Collaboration. Library Based Guidance for Peer Assisted Learning Leaders at Bournemouth University: Theory and Practice.

    Get PDF
    This article begins with an overview of the University’s pioneering Peer Assisted Learning Scheme (PAL) and describes how in 2005/6, the Library became involved, collaborating with the PAL Coordinator to develop materials for use by PAL Leaders. PAL is intended to foster cross-year support between students on the same course. It encourages students to support each other and learn co-operatively under the guidance of trained students from the year above - called PAL Leaders. Two documents were produced to support and empower these leaders. The first, Using the Library for Your Research, provides leaders with key guidance information on the University Library, its resources and the services it provides. The second, Citing References Using the Harvard System, aims to explain and demystify the Harvard Referencing system and to encourage good referencing habits from an early stage of their course through a practical hands-on exercise. Feedback from PAL Leaders continues to inform the development of these guidance materials, in particular the referencing exercise which was reworked to better suit the needs of the leaders delivering it

    TDIR: Time-Delay Interferometric Ranging for Space-Borne Gravitational-Wave Detectors

    Full text link
    Space-borne interferometric gravitational-wave detectors, sensitive in the low-frequency (mHz) band, will fly in the next decade. In these detectors, the spacecraft-to-spacecraft light-travel times will necessarily be unequal and time-varying, and (because of aberration) will have different values on up- and down-links. In such unequal-armlength interferometers, laser phase noise will be canceled by taking linear combinations of the laser-phase observables measured between pairs of spacecraft, appropriately time-shifted by the light propagation times along the corresponding arms. This procedure, known as time-delay interferometry (TDI), requires an accurate knowledge of the light-time delays as functions of time. Here we propose a high-accuracy technique to estimate these time delays and study its use in the context of the Laser Interferometer Space Antenna (LISA) mission. We refer to this ranging technique, which relies on the TDI combinations themselves, as Time-Delay Interferometric Ranging (TDIR). For every TDI combination, we show that, by minimizing the rms power in that combination (averaged over integration times 104\sim 10^4 s) with respect to the time-delay parameters, we obtain estimates of the time delays accurate enough to cancel laser noise to a level well below the secondary noises. Thus TDIR allows the implementation of TDI without the use of dedicated inter-spacecraft ranging systems, with a potential simplification of the LISA design. In this paper we define the TDIR procedure formally, and we characterize its expected performance via simulations with the \textit{Synthetic LISA} software package.Comment: 5 pages, 2 figure

    Modulator noise suppression in the LISA Time-Delay Interferometric combinations

    Full text link
    We previously showed how the measurements of some eighteen time series of relative frequency or phase shifts could be combined (1) to cancel the phase noise of the lasers, (2) to cancel the Doppler fluctuations due to non-inertial motions of the six optical benches, and (3) to remove the phase noise of the onboard reference oscillators required to track the photodetector fringes, all the while preserving signals from passinggravitational waves. Here we analyze the effect of the additional noise due to the optical modulators used for removing the phase fluctuations of the onboard reference oscillators. We use a recently measured noise spectrum of an individual modulator to quantify the contribution of modulator noise to the first and second-generation Time-Delay Interferometric (TDI) combinations as a function of the modulation frequency. We show that modulator noise can be made smaller than the expected proof-mass acceleration and optical-path noises if the modulation frequencies are larger than 682\approx 682 MHz in the case of the unequal-arm Michelson TDI combination X1X_1, 1.08\approx 1.08 GHz for the Sagnac TDI combination α1\alpha_1, and 706\approx 706 MHz for the symmetrical Sagnac TDI combination ζ1\zeta_1. These modulation frequencies are substantially smaller than previously estimated and may lead to less stringent requirements on the LISA's oscillator noise calibration subsystem.Comment: 17 pages, 5 figures. Submitted to: Phys. Rev. D 1
    corecore